If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-42x-63=0
a = 1; b = -42; c = -63;
Δ = b2-4ac
Δ = -422-4·1·(-63)
Δ = 2016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2016}=\sqrt{144*14}=\sqrt{144}*\sqrt{14}=12\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-12\sqrt{14}}{2*1}=\frac{42-12\sqrt{14}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+12\sqrt{14}}{2*1}=\frac{42+12\sqrt{14}}{2} $
| 6y-9=3y+7y= | | 3x+12=3x+12=2x-4 | | 2x+5x=62 | | 5x-2=x+4*3 | | (8x-6)+16=42 | | 5-5*(x-1)=5x | | 3x+15-2*(x+1)=8 | | 2y-1/2=3/1 | | 4x-2x+6=4x+12 | | 3x+15-10=4x | | 4/5*(a-1)=10 | | x*190000=1425 | | 190000-(x*190000)=188575 | | x*(x+0.2)=0.15 | | 154=22/7*r^2 | | +13z+16=-3 | | 9+6=3x | | -13z+16=-3 | | (3x+2)+(x-17)=180 | | (2x+16)+(2x-11)=180 | | (2x+39)+(x-19)=180 | | (2x+39)=(x-19) | | (2x+39)=x-19) | | Y-2=2/3(x+1) | | 3/4*x-2=1/3*x+3 | | 42+139+x=180 | | (4x+8)/x^2-4=5/6 | | (4+x)+(2x+3)=127 | | 17^-4x=15x-10 | | 20=0.65x | | 72/4=9x | | 2^x+12=16^x |